Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis.

نویسندگان

  • Munirathinam Gnanasekar
  • Sivasakthivel Thirugnanam
  • Kalyanasundaram Ramaswamy
چکیده

High mobility group box protein 1 (HMGB1), transcriptional activity regulatory protein is associated with most cancers including prostate cancer. To investigate the effects of down-regulation of HMGB1 expression, we have transfected LNCaP cells with four short hairpin RNA (shRNA) targeting HMGB1 plasmid vectors. Transfection with the four shRNAs efficiently and specifically reduced the HMGB1 expression in LNCaP cells. The gene silencing effects on HMGB1 expression were subsequently confirmed by RT-PCR and immunoblotting analyses. Down-regulation of HMGB1 expression resulted in the inhibition of cell growth in LNCaP prostate cancer cells and the decreased cell number was due to transfected cells undergoing apoptosis via caspase-3-dependent pathways. These findings suggest that HMGB1 is critical for the survival of prostate cancer cells and targeted knockdown of HMGB1 mRNA can be used as a strategy to kill prostate cancer cells. Our findings may have some potential therapeutic relevance for treating prostate cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppressive Effect of Constructed shRNAs against Apollon Induces Apoptosis and Growth Inhibition in the HeLa Cell Line

Background: Cervical cancer is the second most common female cancer worldwide. Inhibitors of apoptosis proteins (IAPs) block apoptosis; therefore, therapeutic strategies targeting IAPs have attracted the interest of researchers in recent years. Apollon, a member of IAPs, inhibits apoptosis and cell death. RNA interference is a pathway in which small interfering RNA (siRNA) or shRNA (short hairp...

متن کامل

Down-regulation of HMGB1 expression by shRNA constructs inhibits the bioactivity of urothelial carcinoma cell lines via the NF-κB pathway

The high mobility group box 1 (HMGB1), which is a highly conserved and evolutionarily non-histone nuclear protein, has been shown to associate with a variety of biological important processes, such as transcription, DNA repair, differentiation, and extracellular signalling. High HMGB1 expression has been reported in many cancers, such as prostate, kidney, ovarian, and gastric cancer. However, t...

متن کامل

HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway

Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increa...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

Early growth response 1 regulates glucose deprivation-induced necrosis

Necrosis is commonly found in the core region of solid tumours due to metabolic stress such as hypoxia and glucose deprivation (GD) resulting from insufficient vascularization. Necrosis promotes tumour growth and development by releasing the tumour-promoting cytokine high mobility group box 1 (HMGB1); however, the molecular mechanism underlying necrotic cell death remains largely unknown. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 2009